A Trispeptide Circularly Organized through Inter-chain Hydrogen Bonds

Yitzhak Tor,^a Jacqueline Libman,^a Abraham Shanzer,*^a Clifford E. Felder,^b and Shneior Lifson*b

^a*Department of Organic Chemistry, and* b *Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76 100, Israel*

Three lipophilic amino acids attached to a C_3 -symmetric base are shown by n.m.r. and i.r. spectroscopy and force-field calculations to exhibit a cage-like structure stabilized by inter-chain hydrogen bonds.

There is a growing interest in cage-like structures for the design of selective ion carriers, receptor sites, and enzyme models. **1** In this communication we report a representative of a new family of tripod molecules, composed of three lipophilic chains of amino acid residues attached to a common anchor. Hydrogen bonds (H-bonds) between non-identical amides of adjacent chains create a chiral organized structure.

The compound, trispeptide **(1),** was prepared by coupling reactions between **tris-l,3,5-(aminomethyl)benzene** and protected L-leucine, using the active ester method commonly employed in peptide synthesis.[†] The monopeptide analogue **(2)** was also prepared for comparative studies.

The conformational properties of trispeptide **(1)** are derived from the combined results of 1H-n.m.r. and i.r. spectroscopy and empirical force field (EFF) calculations.

The 1H-n.m.r. spectrum of trispeptide **(1)** (Table 1) shows a single set of signals in both polar and apolar solvents, indicating C_3 symmetric or rapidly interconverting conformations. The diastereotopic benzylic methylene protons are observed by 1H n.m.r. spectroscopy to be non-equivalent in $CDCl₃$ solution. They exhibit a widely split AB pattern and different coupling constants with neighbouring NH protons, $(J_{NHCH} 5.5, 1.0 Hz)$, which indicate conformational constraints. Although the pattern shifts somewhat with concentration, it is retained down to 5×10^{-4} M, and is therefore not due to aggregation. It collapses, however, in polar solvents. In contrast, the benzylic protons of the monopeptide analogue **(2)** give rise to a single signal even in apolar solvents. The chemical shift of the $C_{\alpha}H$ proton of the monopeptide **(2)** differs by *0.3* p.p.m. from that of the trispeptide (1) in CDCl₃, while in polar solvents the difference is only 0.03 p.p.m. All these indicate that the conformational constraints are, at least in part, due to polar interactions between the chains.

Table 1. lH N.m.r. chemical shift values for trispeptide **(1)** and monopeptide **(2)** in various solvents."

	Trispeptide (1)			Monopeptide (2)		
Proton	CDCl ₂		$[{}^{2}H_{6}]$		CD ₃ OD DMSO CDCl ₃ CD ₃ OD DMSO	$[2H_6]$ -
CH_2NH	4.32 ^b (4.24) ^c $4.00b$ (3.97)	4.34	4.20	4.43	4.37	4.26
$C_{\alpha}H$ BocNH	4.43 ^b (4.46) $PhCH2NH$ 7.64 (7.85) (5.58) 5.43	4.12	3.99 8.25 6.84	4.12 6.41 4.82	4.09	3.97 8.31 6.89

^a N.m.r. spectra were recorded at 270 MHz, 5×10^{-3} m, 298 K, unless otherwise stated. **b** 293 K. \cdot Values in parentheses are for a 2 \times 10⁻² M solution.

t N-Boc-L-leucine N-hydroxysuccinimide active ester was treated with **tris-l,3,5-(aminomethyl)benzene** to afford **(1)** in **58%** isolated yield. M.p. 230° C (decomp.), $[\alpha]_{D}^{32} + 24^{\circ}$ (c 0.7, CHCl₃). The mono derivative **(2)** was obtained in **93%** isolated yield by replacing the triamine by benzylamine. M.p. 76-79 °C, $[\alpha]_D^{32} - 28$ ° (c 0.6, CHCl₃).

Figure 1. The calculated lowest energy conformation of trispeptide $(1).$

The i.r. spectrum shows two stretching frequencies for the NH bonds of the trispeptide (1) in dilute CHCl₃ solutions (5 \times $10⁻⁴$ M), corresponding to two types of NH bonds: one, at 3436 $cm⁻¹$, indicates a free NH, the other, at 3354 cm⁻¹, indicates a H-bonded NH. The monopeptide analogue **(2)** shows a strong band at 3437 cm^{-1} with only a tiny shoulder at 3350 cm^{-1} , indicating essentially free NH. This suggests that the H-bond in the trispeptide **(1)** is between the chains. The n.m.r. temperature coefficients $d\delta/dT$ of the chemical shifts of the benzylic and Boc amide protons of trispeptide **(1)** (measured in CDCl₃ at 5×10^{-3} M) are significantly larger (-0.0170 and -0.0086 p.p.m. K^{-1} , respectively) than those of the monopeptide **(2)** (-0.0026 and -0.0023 p.p.m. K-1, respectively) indicating thermal lability of the \hat{H} -bonds in (1) .

The NH-ND exchange rate of the Boc NH protons in CDC13 solution of **(1)** is half that of the benzyl NH proton. Small increments of $[{}^{2}H_{6}]$ dimethyl sulphoxide (DMSO) cause a smaller shift of the Boc NH than of the benzyl NH signal. These data suggest that inter-chain H-bonds are formed, with the Boc NH as a donor. The acceptor must be the benzylamide carbonyl since H-bonds among amides of the same kind in tripod molecules are geometrically unfavoured.3

Empirical force field (EFF) calculations^{3,4} suggest the preferred equilibrium conformation of trispeptide **(1)** shown in Figure 1. Its energy is lower by *ca*. 4 kcal mol⁻¹ (1 kcal = 4.184 kJ) than that of the next local minimum, and by more than *5* kcal mol-1 than all other local minima. It contains the inter-chain H-bonds observed in chloroform. It also contains intra-chain H-bonds that were not observed. These H-bonds are distorted according to the EEF calculation (NH \cdots O 151°, H \cdots O=C 98°) and therefore weaker. Since our EFF calculation ignores solvent effects and since polar solvents reduce the strength of H-bonds, prediction of such H-bonds might be confirmed in purely apolar solvents. 4^b Indeed, the stretching frequencies of the two types of NH bonds in a $CCl₄$ solution \bar{c} *ca.* 1×10^{-4} M) are 3351 and 3288 cm⁻¹, indicating two H-bonds of different strength, as predicted by the EFF calculation.

When forming inter-chain H-bonds in trispeptide **(l),** NH may bond to O=C on either the right or the left. These alternatives are diastereoisomeric, because the chains are chiral. The calculations predict that the most stable conformation is counter-clockwise, as seen in Figure l, while the next most stable conformation, 4 kcal mol⁻¹ more strained, is clockwise.

This type of organization through inter-chain H bonds is not a mere curiosity. It has been observed in other tripod structures derived from tris(2-aminoethyl)amine and $1,1,1$ tris(hydroxymethy1)ethane.

This work was supported in part by the US-Israel Binational Science Foundation, Jerusalem, Israel, and by the Minerva Foundation, Munich, Germany.

Received, 7th January 1987; Corn. 021

References

- J. M. Lehn, Science, 1985, **227,** 849; D. J. Cram, ibid., 1983, **219,** 1177; H. M. Colquhoun, J. F. Stoddart, and D. J. Williams, Angew. Chem., Int. *Ed.* Engl., 1986,25,487; R. M. Kellog, ibid., 1984,23, 782; R. Breslow, *J. Inclusion Comp.*, 1984, 3, 473; I. Tabushi, Tetrahedron, 1984, **40,** 269; J. Rebek, Jr., Acc. Chem. Res., 1984, **17,** 258.
- 2 E. S. Stevens, W. Sugawara, G. M. Bonora, and C. Toniolo, J. Am. Chem. SOC., 1980, **102,** 7048; G. M. Bonora, C. Mapelli, C. Toniolo, R. R. Wilkening, and E. S. Stevens, *Int. J. Biol. Macromol.,* 1984, *6,* 179.
- **S.** Lifson, C. E. Felder, **A.** Shanzer, and J. Libman, 'Progress in Macrocyclic Chemistry,' vol. 3, eds R. M. Izatt and J. J. Christensen, Wiley, 1987, p. 241.
- (a) **S.** Lifson, C. E. Felder, and **A.** Shanzer, *J.* Am. Chem. SOC., 1983, **105,** 3866; **S.** Lifson, C. E. Felder, and **A.** Shanzer, Biochemistry, 1984, **23,** 2577; **S.** Lifson, C. E. Felder, and M. Dobler, Acta Crystallogr., Sect B, 1987, **43,** in the press. (b) **A.** Shanzer, J. Libman, **S.** Lifson, and C. E. Felder, *J. Am.* Chem. *Soc.,* 1986, **108,** 7609.